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I. INTRODUCTION

Many industrial plants, especially electric power gener-
ating plants, use large guantities of water for cooling pur-
poses. When heated waters from such industrial plants are dis-
charged into rivers, lakes and estuaries, they can disturb the
ecological balance and destroy the natural habitat of aquatic
life by changing the temperature levels. In rivers the hot dis-
charge waters can cause miles of hot sections which act as thermal
barriers and prevent fish from going upstream to their spawning
grounds. In regions of high ambient temperatures, such as along
the East Coast of Florida, the hot discharges can cause excessive
estuarine temperatures. This in turn increases the evaporation
and results in an overall increase in the level of salinity. Tur-
bidity of mineral origin can be generated by the dislodging and
suspension of sediments by currents such as those caused by hot
discharges. Turbidity of biological origin can be generated by
photoplankton growth in thermally suitable environments. The above
outlinéd processes can ruin the marine environment as far as eco-
logical, fishing and recreational interests are concerned.

A major source of thermal pollution of rivers, lakes and es-
tuaries is the hot water discharge from the condensers of fossil
and nuclear fueled power plants. The demand for electric power
in the world is now doubling every nine years, and indications are
that the rate of increase will be even greater in the coming de-
cades. About 5500 BTU of thermal energy are produced for every
kilowatt hour of electricity generated by a conventional power
plant. Nuclear powered plants, being less efficient, produce
about 10,000 BTU per kilowatt hour. This means that the doubliné
time for hot discharges, the cause of thermal pollution, is less
than nine years, or about eight years.

In order to meet the growing cooling water regquirements, it
is projected that by 1980, thirty-two percent of all steam elec-
tric stations will be located adjacent to estuaries or on cpen sea
coasts. The problems associated with the release of these large

- [-
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volumes of heated water are compounded by recent trends within
the power industry. Large plants, including more nuclear power-
ed generators, are being built, and groups of these units will
be located at a single site. Thus the United States, and the
world, face a potential problem in environmental alteration of
enormous proportions, particularly in estuarine and coastal

marine waters.

In a report 1 on Potential NASA Intiative in Water Resources,

it is pointed out that controlling the heated water discharges
has been identified by the 0Office of Water Resources Research ad
one of the important problem areas. Thermal pollution is also

one of the problems to be considered in a NASA Environmental

Quality Enhancement Program Study 2. Proper management will be

based on the ability to detect thermal pollution and to alleviate
it. In order to achieve this goal, it is necessary to have a
thorough understanding of the motion and diffusion of thermal dis-
charges and the extent of the region affected. Most studies in
this arxea have been empirical or semi-empirical in nature. The
few existing models are based on much too simplified assumptions
and are limited to one or two-diménsional studies. In order to
obtain a better description of the physical situation, a more
accurate prediction of the water body temperature distribution

is needed.

In a NASA sponsored feasibility study completed in January
1974, a team of researchers at the University of Miami concluded
that it is feasible to develop a generalized three-dimensional
predictive, mathematical model, involving remote sensing and in
situ measurements to supply_neéessary parameters. It was re-
commended that the development of the mathematical model be
conducted over four phases covering a time period of three years.
Three sites were proposed tc be used for the development and test-
ing of the model and for the development of remote sensing for
thermal pcllution and turbidity detection. These three power plant
sites are the Florida Power and Light Company Turkey Point and



Cutler Ridge facilities and Port St. Lucie Nuclear Power Plant
units on Hutchinson Island. These three sited are located in
south Florida, close to both the Kennedy Space Center and the
University of Miami. Another interesting feature is their
geographical contrast. The Turkey Point and Cutler Ridge fac-
ilities are located at a shallow lagoon type estuary, while

the Hutchinson plant discharges into the off-shore continental
' shelf. Both sites shoutd provide a good test area for the uni-

versal nature of the proposed three-dimensional model.

The present contract,which was initiated in March, 1974
and covers a period of six months, covers the first phase of
the model development. This study will serve the following pur-
poses: (1} the development and testing of a generalized mathema-
tical model to predict three-dimensional temperature and salinity
distribution in coastal regions receiving hot discharges; (2) the
improvement in the accuracy of the thermal remote sensing system
by directly relating them to thermal radiation from the sea sur-
faces ‘and by better accounting for the absorption in the atmos-
phere, and (3) the development and testing of an active remote
sensing system to measure the water turbidity. This study program
is being carried out in four parts. They are closely related and
are to be conducted concurrenﬁly. The mathematical model devel-
opment is the major part of the project. Remote sensing and in-
situ measurements, the second and third parts, are needed to sup-
port the model development. At the same time, a turbidity re-
mote sensing system is being developed. The relationship between
these various phases of the study may be shown by a flow diagram

in Fig, 1-1.

In the mathematical model development, the study has been
divided into four tractable parts, whose results are to be syn-
thesized for the overall model as follows: (1) a one-dimensiocon-

al study of the energy equation with no horizontal transport, or



convective terms is being made. The results will be compared
with field data. Conclusions regarding the magnitude and var-
iation of the vertical eddy diffusivity can be made from this
study. The sclar radiation boundary condition and the form of
the source term in the energy equation should also be available
from this study; (2} a rigid-lid model for the Bay with no
tidal effects will be used to give a reasonably clear picture

of the wind—driven circulation in the Bay; (3) a free surface
model including tidal boundary conditions will be the final gen-
eral circulation model. The velocity and temperature fields ob-
tained from this will be used as the far-field solution for the
thermal discharge model; {4) the jet-discharge will be modeled
with a horizontal stretching as well as a vertical one to trans-
form the basin to a constant depth - one with the horizoental do-
main extending from +1 to -1 and 0 to +1, in the transverse and
longitudinal directions, respectively. The combined results of
(3) and (4) will constitute the predictions regarding thermal
pellution in Biscayne Bay. The programs will be of sufficient

generafity to be applied to other basins with thermal discharges.

In this six month peried, the rigid-lid model has been devel-
oped and results obtained for different wind conditions. The
computer program is well behaved numerically for the closed basin
approximation of Biscayne Bay. The next step is to include tidal
effects. Finally, temperature will be included in the rigid-1id
model. The one-dimensional study program is at an advanced stage.
The computer program is ready and results are being compared with
field data. More comparisons will be made as new data is col-
lected for this project. The near-field problems have been formu-
lated. Both free-surface and rigid-1id formulations have been
done. The programming has been initiated. The free surface far-
field formulation and programming has been completed. Debugging

and modifications will be initiated socon.



The experimental part of this project serves many purposes.
It is to provide ground truth for remote sensing measurements,
to provide initial and boundary conditions and verification of the
mathematical model, and to assist in the development of new re-
mote sensing technigues. "This part of the study can be divided
into three related experiments, namely; 1) Ground Truth and In-
Situ Measurements, 2) Remote Sensing Water Surface Temperature
Study, and 3) Turbidity‘Laser System and Ground Truth Water Sur-
face Temperatﬁre Study. In this first phase of the program, the
design of the measurement system has been completed. Necessary
instruments needed for the first stage of the experiment have been
acquired, tested and calibrated. Test runs have been carried out
in Biscayne Bay to establish proper procedures for shipboard
measurements, For the remote sensing experiment, radiosonde data
in Miami area has been collected for water vapor corrections:of
infra~red Measurements. Arrangements have been made to obtain
I.R. data from the Air Force Defense Meteorclogical Satellite
Program (DMSP), formerly DAPP, Satellites and the National
Oceanit¢ and Atmospheric Administration NOAA~2 and NOAA-3, IIOS
Series of Satellites. On July 29, 1974, the Kennedy Space Cen-
ter NASA-6 Beechcraft C-45H made research flights over Biscayne
Bay at Miami, Florida, while NOAA and Air Force Satellites with
thermal IR radiometers were passing overhead and a boat was
gathering ground truth data in the bay. The aircraft flew at
1500 ft. altitude and made twelve west to east data passes a-
cross Biscayne Bay between 0800 EDT (1200 Z) and 1300 EDT (1700 Z).
This experimental data-has been analysed and certain problem
areas have been corrected. It is felt that these preliminary
experiments have achieved its goals. Procedures have been est-
ablished, and all personnel have been trained in the operation of
all the instruments. From the trial runs and the experience ac-
guired in the use of the instruments and handling of remote sens-
ing data, the team is ready to conduct further experiments in the
latter part of the program.

Detailed reports on the various parts of the present study

are given in the following chapters.
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II. MATHEMATICAL MODEL

A, Introduction

1. The Need for Numerical Modeling

There has been a growing interest recently in the effects
of chemical and thermal pollution on the environment. The ef-
fects can be directly harmful to the higher consumers in the food
chain, e.g., fishes, man. More often, thermal pollution
first affects the lower forms of life such as algae, plankton,
and small organisms. Disturbances in the food chain propagate
and the effects soon become apparent. Sometimes entire species
of plankton or algae vanish from the ecosystem. In rivers the hot
discharges can cause miles of hot sections which act as thermal
barriers and prevent fish from going upstream to their spawning
grounds. In regions of high ambient temperatures, such as along
the east coast of Florida, the hot discharges can cause excessive
estuarine temperatures. This increases the evaporation and re-
sults in an overall increase in the level of salinity. Turbidity
of mineéral origin can be generated by the dislodging and suspen-
sion of sediments by currents such as those caused by hot dis-
charges. Turbidity of biological origin can be generated by phyto-
plankton growth in thermally suitable environments. The above out-
lined processes can ruin the marine environment as far as ecological,
fishing and recreational interests are concerned. A more serious
ef fect sometimes is the distortion of coastal aquifiers used for

water supply.

The sources of pollution usﬁélly are sewage systems, power
plant cooling systems (open cyéle), industrial discharge into
lakes and rivers, and other installations which use the environ-

ment as a direct chemical or thermal sink.

For a meaningful study of the effects of pollution on the
chemistry, biology, or zoology of an ecosystem, it is imperative
that the hydrodynamic and thermodynamic information may be used

in the overall ecological model.
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one of the major problems in experimental modeling of
large ecosystems like Biscayne Bay is the difficulty of re-
producing the turbulent scales in laboratory facilities. The
eddy viscosities vary by orders of magnitude. Conseguently,
there is always the possibility of getting observations from
laboratory facilities which do not model flows on geophysical

scales, even qualitatively.

This indicates the necessity of numerical modeling. A
numerical model may be used to simulate various limiting situ-
ations with relative ease. Besides, decisions can be made a
priori regarding the environmental impact of facility locations.
Numerical modeling is therefore an invaluable tool for making

decisions regarding siting of power plants.

2. Bisgcayne Bay

Fig. 2.1 shows a map of the Biscayne Bay area. The nu-
merical model must incorporate the general, wind-driven and tide-
driven circulation in the Bay together with the velocity and
temperature field distortions caused by thermal discharges. The
Bay is about 25 kilometers long and 8 kilometers wide in its
maximum reaches. The Bay has several basins connected by shallow
limestone sills. The major flow.into the Bay comes through the
shoal areas located at the northeastern part of Biscayne Bay.

This is about 16 kilometers in length, with the shallow limestone
sills varying from 1 to 3 kilometers in width. The mean low water
is from 1 to 3 ft.. in depth, with about 20 channels with maximum
depth up to 15 ft. There arelseveral other inlets at Bear Cut

and lower Biscayne Bay connecting it to the Atlantic Ocean. Broad
Creek, Angelfish Creek, and Caeser Creek are the significant con-

necting channels.

The main basin is divided in the middle by Feather Bed Bank.
Cutler Bank and Card Bank demarcate the other two basins, namely

Ccard Sound and Barnes Sound. The maximum depth of the Bay is

around 12 ft.
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3. Relevant Literature Survey

The numerical modeling effort may be divided into two
separate studies. The first one comprises the general cir-
culation and temperature field in the bay, under the action
of tides, wind and solar heating. The second comprises the
modeling of a buoyant heated jet with the general circulation
model supplying some of the boundary and initial conditions.
Therefore, the literature survey will first discuss the general
circulation models and then the existing literature on modeling

of thermal plumes.

Ekman [l1]*was one of the earliest to investigate wind-
driven circulation. Welander [27 modeled the time-dependent
and steady-state solutions for the finite depth case. He found
that the local time-histories of wind-stress and surface slope
may be used to express the velocity and flow fields. He also
found the sea level elevation in terms of a single integro-
differential equation. He neglected the horizontal viscous terms

and non-linear inertia terms in the Navier-Stokes equation.

Though these analytical models were adequate for understand-
ing some of the basic characteristics of wind-driven circulation,
numerical modeliny  became necessary for cases including effects
of bottom topography, non-linear inertia terms and side-wall

boundary lavers.

Integrated stream—function models have been used by Gedney
and Lick 3] and others for lake and ocean flows. These essen-

tially are two-dimensional,

Numerical models of greater complexity have been developed
by Bryan [47], Crowley [5,6,7], Berdahl [8] and othersat Lawrence
Radiation Laboratory., Brvan's and Crowley's models dealt with
constant depth situations, for rectangular and irregular domains.

*Numbers in square brackets indicate references at end of report.
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The major findings were that the rigid-lid model where vertical
velocities are zero at the surface was adequate for the general
circulation aspect but erroneous in predicting the Rossby wave
speeds. The rigid-lid models were computationally superior in
saving computer time. Berdahl [117] used the primitive equations
of motion, rather than the stream function approach, e.g.,

Bryan [4]. He used a rigid-1lid model and found the same advan-
tages and disadvantages for the rigid-lid model in comparison to
the free-surface model.

Sengupta and Lick [97] developed a rigid-lid model. They
Bed a predictive equation for pressure derived from the horizontal
momentum equation. The solution was advanced in time using ex-
plicit schemes on the momentum and energy equations. They avoided
programming difficulties of a variable depth basin by a vertical
stretching which converts it to a constant depth basin. This
stretching was first suggested by Phillips [10] and later used
by Freeman et al [11] in a free-surface model for Lake Huron.

v

Modeling of Biscayne Bay till now has been confined to
two-dimensional considerations. Dean et al [12] used vertically
integrated momentum equations to predict water elevations and disg-
charges of the Biscayne Bay Card Sound system. They incorporated
tidal effects and approximated the effects of shallow sills by

using friction factors.

Extensive work has been done in the past few years on mod-
eling thermal discharges from electric generating plants. A
critical appraisal of the various existing models has been made
by a team at Argonne National Laboratory. Reports by Policastro
and Tokar [13], Policastro {147 and Policastro and Paddock [l5]
summarize these evaluations. The authors compared the models
with field data from existing thermal discharges. The bulk of
the models were two-dimensional with only a few considering the
effects of buoyancy.
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Paul and Lick [167] modeled the Cuychoga River discharging
into Lake Erie. Their model was three-dimensional in character,

and effects of buoyancy were clearly illustrated. Waldrop and
Farmer [17] modeled the discharge of a river into a crossflow,
They excluded the effects of temperature gradient but included
buovancy effects due to salinity gradients. The applied trans-
formation in the horizontal plane which mapped the semi-infinite
domain into - 1 to + 1 and 0 to + 1 in transverse and longitudinal
direction to the river. This also resulted in grid structure
which was constant in the transformed plane but increased in size
away from the origin in the real plane. This allowed them to con-
sider a large plane without too many grid points yet retaining

fairly good resolution near the river mouth.

Rooth and Lee [187 have made a simple heat budget model for
estimating steady state thermal anomaly areas from hot discharges.
They ignored vertical structure of the flow mixing. Surface
evaporation and sensible heat transfer at the surface were as-

sumed to be the dominant heat transfer mechanisms.

4. General Considerations for the Present Investigation

A survey of recent literature indicates that it is numeri-
cally cumbersome to medel the Biscayne Bay together with the ther-
mal discharges simultaneously. The stability limits, the pro-
gramming idiosyncrasies are markedly different for the general

circulation model and the near field jet-like thermal discharge.

The problem has therefore been divided into more tractable
parts, whose results are to be synthesized for the overall model.
Fig. 2.2 shows the various parts and their interrelationships.

a) A one-dimensional study of the energy equation with no

horizontal transport or convective terms is being made,
The results will be compared with field data. Con-
clusions regarding the magnitude and variation of the
vertical eddy diffusivity can be made from this study.
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The golar radiation boundary condition and the form
of the source term in the energy equation should also
be available from this study.

b) A rigid-lid model for the Bay with no tidal effects
will be used to give a reascnably clear picture of
the wind-driven circulation in the Bay.

¢) A free surface model including tidal boundary conditions
will be the final general circulation model. The veloc-
ity and temperature fields obtained from this will be
used as the far-field solution for the thermal discharge
model.

d) The jet-discharge will be modeled with a horizontal
stretching as well as a vertical one to transform the
basin to a constant depth - one with the horizontal do-
main extending from + 1 to - 1 and o to + 1, in the
transverse and longitudinal directions, respectively.

The combined results of 3 and 4 will constitute the predic-
tions regarding thermal pollution in Biscayne Bay. The programs
will be of sufficient generality to be applied to other basins

with thermal discharges,
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B. THE FAR FIELD

The general circulation for Biscayne Bay has been modeled
using both the rigid-lid approximation and free-surface repre-

sentation. The two parts will be discussed separately.

The system of equations which describe the circulation in
a variable density basin are the three Navier-Stokes equations,
the energy equation, the conservation of mass egquation, and the
equation of state. The driving mechanisms are the surface wind
stress and the surface heat transfer. The wind stress directly
inputs energy into the system by momentum transfer from the wind
to the fluid in the basin. The surface heat transfer may cause

motions by change of density and conseguent buoyancy forces.

1. The Rigid-Lid Model

Fig. 2.3 shows the general coordinate system for which the
equations are derived. A left handed cartesian coordinate system
has been used, with x, v the horizontal axes and z, the vertical

coordinate. =z increases downwards with the air-water interface

as the origin.

1.1. Assumptions and Approximations

a) In order to avoid gravity waves, and thereby small time
scales and consequent large computation times, the rigid-
lid approximation is made. This forces the vertical
velocities at the surface to be zero, but allows hori-
zontal velocities. Hag and Lick [19] have developed a
criterion for the validity of the rigid-lid approxi-

mation. They define a parameter

2
g = 4n"gH (2-1)
sz2
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and state that for g - = the rigid-lid solution is ap-
proximated. Here g is the acceleration due to gravity,
f the Coriolis parameter and L and H the horizontal and
vertical length scales. They found that the rigid-lid
approximation gave almost the same solutions as free-
surface models if g > 10,

b) The vertical momentum is approximated to the hydrostatic
equation. This is quite accurate since the vertical ve-
locities are normally very small. The horizontal length
scale is very large compared to the vertical length scale.

¢) The effects of turbulence are modeled by using eddy trans-
port coefficients. '

d) The Boussinesq approximation is made implying that the
density variations are small except in the vertical mo-

mentum equation in the form of a buoyancy term.

1.2, Basic Egquations

The conservative form of the convective terms are presented
here., The conservative form results in conservation of mass, mo-
mentum and energy and avoids computational instabilities in long
term integrations of the time dependent equations. The equations
have been stretched in the vertical coordinate using the stretch-
ing

v = 7hix, y); ;:g
where h is the depth at any x, y location. This converts the basin
tc a constant depth one. Now the same number of grid points in the
vertical direction may be used at shallow or deep parts of the Bay
without using variable grid sizes in the program. The details of

the derivations are presented in a report by Sengupta and Lick [19].

The non-dimensional equations are:
Continuity

A 2l g L
20 ' 2p " A {2-2)
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Equation (2-7) is integrated and substituted in the horizontal
momentum equations which are then integrated from v = o to y = 1.
The integrated forms of these equations are that cross-

differentiated with respect to x, and y and summed. The re-

sulting equation for pressure is
) )

- A

?934(3% -

dl= OpT )

AT
%qﬂ e o4 }{/\ q’h, 7Ll/£ o (2-8)
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The last term in equation (2-8) is the Hirt and Harlow [20] cor-
rection term. This is evaluated by a backward difference scheme
in time with the present time set equal to zero. This is nec-
essary because the Poisson equation is solved by iterative tech-
nique leading to errors. If they are not corrected, the con-
tinuity equation is not satisfied leading to accumulation or loss

of fluid from the system.
Equations {2-2) to (2-8) form the system of equations which
together with the appropriate boundary conditions constitute the

mathematical model.

1.3. Boundary Conditions

The boundary conditions may be written separately for the
air-water interface, the sidewalls and the bottom of the basin.
At the air-water interface the boundary condition on the mo-
mentum equations are obtained in the form of wind stress. This
may be Hetermined from experimental correlations. Edinger and
Geyer [21] have determined the heat flux relations at the air-
water interface. They define an equilibrium temperature as that
at which no heat flux takes place at the surface and relate heat
flux directly to the difference between the surface temperature
and the equilibrium temperature.

Heat flux = pQ = K_ (TE - TS)

in dimensional form, where KS ig the surface heat transfer co-

efficient and T. the dimensional surface temperature.

S ~
AQ;—_ r_za'." QT
Now O D2 at surface

) K$ [+ _ T
or ?___L R (‘Tff Tg )

0 E '
The conditions on the sidewalls are no-slip, and no normal

velocity, for the momentum equations except w + 0, due to the

hydrostatic equation. The heat flux is approximated to be zero.
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However, the heat flux may be also specified as a function of

the wall temperature and some heat transfer coefficients.

At the bottom, the conditions of no-slip and no normal
velocity are applicable. The energy equation has a boundary con-
dition of zero heat flux, As discussed for the side walls it may
be equated to non-zero values also.

Therefore, the boundary conditions are in summary:

Normal deriwvatives

E‘) X s ‘.395_. - L\ !:)a[\ 7Y :

oo or o w2 2T .

The boundary conditions on the pressure equation are ocb-

tained by evaluating the wvalues of gPS and %%E from the momentum
o
equations. Therefore, the pressure solution requires a solution

to the Neumann problem. The solution is unique to within a con-
stant. However, since only the derivatives of pressure enter the
momentum equations, the actual values of the pressure solution

surface are unimportant as long as the shape is correct. At the
surface

at y = 0

=20 Rigid-Lid

W@a LT (M),
’/W U,,L@N)/C

where CéqLand. C%? are wind stresses in the x and y - directions
respectively.

At the bottom of the basin:
at'\(=l
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n=20

u = —
v=20

3T _ o

3y

On lateral walls:

u =0

Q#0

1.,4. Method of Solution

Fig. 2.4 shows the grid system and the arrangement of
variables. u and v are located on integral modes (i,j,k) on the
horizontal or x,y plane. P, w, andT are located at half grid
points (i + 1/2, j + 1/2, k). The arrangement is repeated in the
z or vy direction, represented by K.

.
The finite difference equation for the momentum and energy

equation may be represented in the general form.

n+1 n
u =u

A = (convection)n + (pressure)n + (viscous)n

Where u may be replaced by v or T (for the T equation the
pressure term is not there). The spatial derivatives are central

differenced.

The pressure eguation is approximated by a five-point scheme

and solved by Liebmann relaxation procedure.

The relevant stability criterion are:

Convection

Co (B + & (g + G (Hrg) <4
Diffusion

Dy Wz , d%ﬁ)l'* 0, A%)g-)z / %
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lx, ly, and lz may be interpreted as the maximum wvalues of u, v
and w in the domain and D, Dy"Dz as the kinematic eddy trans-

port coefficients in x, y and z directions,

Fig. 2-5 shows the flow ¢hart for the steps in the solution
algorithm summarized below:

1. Using values at time step n, calculate the forcing term
for the pressure equation.

2. Solve the pressure equation iteratively.

3. Calculate u, v from the momentum equations.

4. cCalculate () from the continuity equation using u, v at
n + 1.

5. Calculate T from the energy equation.

6. Calculate p from the empirical equation of state.

The values at (n + 1) have now been obtained. Repeat the

procedure for (n + 2) using value at (n + 1).

2. The Free - Surface Model

The mean ocean tide for Biscayne Bay is about 2.44 ft,
Since, the maximum depth of the Bay is around 12 ft, the tidal
effects are significant, To model the effects of tides a free-

surface model is imperative.

Fig. 2-6 shows the general coordinate system for which the
equations are derived. Freeman et al [117] have derived the
governing equations for a free-surface model. Their procedure

is followed here.
All the assumptions of the rigid-lid model apply for the
free-surface model except for the zero vertical velocity condition

at the surface.

2.1, Basic Equations

A vertical stretching of the form
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vy = Z/H is used

where Z %z (x,y,z,t) is the position relative to the free sur-—

face.

H=H (x,v,t) is the depth relative to the free surface.

Z =2z + 1 (x,y,t) where z is the position relative to the
mean water level and 71 the free-surface elevation measured pos-

itively upwards also

H="hh (x,y) + 1 {x, v, t) where h is the depth of the basin -
with respect to the mean water level. vy is 0 at the free-surface
and 1 at the bottom.

As a result of the above transformations we can define pres-
sure gradients as follows: {in dimensional form for easier under-

standing)

(a9t =y =11 VT st e

@V?‘@) ?){7(){: - '—?":d )’Y;)’L)t fﬁk ?H m)‘) 7() (2-11)

an appropriate form of the continuity equation is

QDE}C 1YY v Cr)%izﬁf‘ N (2-12)
+<'a“’}‘»37>2)ve ( o

The horizontal momentum equations may be written as

(8% eyt 5% g @‘@:’f))xmt
o B@MUKMJ X’ ]_ _L( 2 Yy v
1 (V- e - A
v (B (V3 ))y w M@" (k) e
+ 'SCHWGD’H r—a-:(ﬂxp}}{- |
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The energy equatlon may be written as

T T e
JcHrC& ‘> o3 = ‘51+< >)T;‘*t+8” <?Ef@l)>7”:’

' l_(it* a\/ ‘ v%afi:i)sﬁ)ﬁfjfT,

By 1ntegrat1ng (2-12) over the height, we get
ow,ﬁj CB[_HLD )Qm)) dy

if we lntegrate (2-12) from O to v, we get
0.1 “(Cﬁf'*“%ﬁ(*ﬂ)) X agpm BIC ))ij 217

The hydrostatic relation can be 1ntegrated from v =0 to ¥ = v

(2-15)

(2-16)

to obtain

v oo
P (y) =P (0) +gH [y p (y)dy (2-18)
also
_4dz _ . dv _ dy . dh -
w=gr=Hget v 1§ & (2-19)

The above set of equations is sufficient to model the free-

surface general circulation in Biscayne Bay.
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2.2. Boundary Conditions

The boundary conditions aré the same as that for the rigid-
1id model except that now vertical velocities can be non-zero at
the surface. Also we have to specify the wave height at tidal
inlets,

The new variable 7T introduces a boundary condition from con-
tinuity;

‘oL (py9t) = C\’(MXXW O>:«t vt
Q%C’X) ‘ﬂm@ C)(’H‘)(‘XPLAF’:)O/O)& vt

X

(2-20)

(2-21)
8’ and Yp signify lateral walls.

At tidal inlets Eﬂ:isfknown. Therefore the relation between
velocities at boundarfaghd the next adjacent interior point is
specified. At solid walls u, v are zero.Therefore since interior
values can be calculated,iﬁl is automatically specified by equa-
tiong {(2-20) and (2-21}. ot

2.3, Method of Solution

A staggered grid of the kind used for the rigid-lid model
is used here., There is one extra variable H or 7, defined at half-
grid points.

The equations are forward differenced in time and central
differenced in space. The integration procedure is as follows:

a) Calculate H and 7 at n #+ 1 using values at n
b) calculate P at n + 1

¢) Calculate T at n + 1 using values at n

d) cCalculate u, v at n + 1 using values at n

e) Calculate g at n + 1 using values at n + 1 of other variables
f) Calculate w using .

g) Calculate p at n + 1 using Tatn + 1
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Repeat the procedure for next time step. Fig 2.7 shows
the flow chart.

3. One-Dimensional Analvysis

The wvertical eddy transport coefficient is a dominant pro-
perty of the flow field., The vertical structure is largely in-
fluenced by the value and variation of the vertical eddy trans-

port coefficient.

If we neglect the convective and horizontal diffusion
terms from the energy eguation, we obtain a one-dimensional form

cf the equation.

—~ Pt

2
%% = Bv-éjg + @ -(dimensional). form . (Q - Source term) (2-22)
az
For the constant KV case an analytical solution can be ob-
tained for the above equation in the domain 0<Z<H, tz0, given
T{0). Where H is the depth of the basin. The boundary conditions

being heat transfer coefficient at the surface and bottom.

i.e. — ~ K ~ ~
at z =0 2= =2 (1. - 1)
at z )

where BZ =pC B

~

at Z = H. QaT/32 = 0. -(adiabatic.)
All the other notations are the same as in previous discussion. .

However, in most situations B, varies with depth and density
stratification. The non-linear interaction of wind generated tur-
bulence and buoyancy generated turbulence may cause phenomena like

the formation of a thermocline.

One much used model for the eddy diffusivity is the Richardson

number model. The Richardson number is defined as
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g 3P/ 2
LAY

i a-Lt! 2
3 &)
g is the acceleration due to gravity, ap/3z the local density

gradient, and 3u/az the vertical gradient of velocity. The co-

ordinate z is positive downwards.

There are many empirical formula relating the eddy trans-—
port coefficients with the Richardson number. Munk and Anderson
[22] and sunderam and Rehm [23] have discussed some of these re-

lations. OCne suitable form is

By~ By, (L R )"

Bv, ig the value with no density stratification.

m and n are empirical constants.

The source term is largely determined by the solar absorption
characteristics and thereby by the turbidity of the basin. Harleman
and Dake [24] have determined some exponential forms for Q variation
with z.' They show that the form of Q variation with depth can

greatly enhance the formation of the thermocline.

The purpose of the one-dimensional investigation is to find
the value of Byo and some simple law that gives the variation of B
with z. Also, some idea of the form of Q can be obtained.

Equation (2-22) can be very simply solved by finite~-difference
methods. The results can then be compared with field data collected
in Biscayne Bay. By an empirical process of matching numerical
results with field data the va}ues of BV.o and the forms of BV and Q

can be determined.

Some preliminary results for the one-dimensional case are
shown in Fig. 2.8, The results for a variable K, are shown for
heating to 30 days. The initial temperature difference between the
ambient and the fluid media is 20°Cc. It can be seen that after
30 days the beginnings of a thermodine can be seen at about mid-
depth. The profiles for constant K, however show the regular

conduction type profile with no thermoclive behavior.
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C., THE NEAR FIELD

A thermal plume issuing into a basin has regimes of different
fluid mechanic characteristics. Right at the mouth of the discharge
the flow is totally dominated by a jet like behavior., The jet then
spreads with turbulent mixing at the edges. The convective trans-
port is quite dominant. The bouyéncy of the jet causes it to move
upwards., Still further downstream the general circulation becomes
the dominant force. The hot water from the jet forms a thin layer
at the surface and spreads under the action of diffusion and gen-
eral circulation.

For our present study we have defined two regions namely the
"near field" and the "far field". The far field is that region

where the temperature and velocity anomaly is caused by the discharge.

The "near field" is the region influenced by the thermal discharge.
The "far field" solution, however, affects the'"near field" although
not vice versa.

The governing equations are the same as derived for the "far
field". The boundary conditions are different. A typical domain
is shown in Figqure [ 2.27]. One side of the domain consists of a
solid boundary at which no-slip conditions are satisfied except
at the discharge point where velocity and temperature profiles
are specified. The dotted lines indicate the far field boundary.
Here the results from the far field solutions are specified.
However, this boundary condition has to be constantly updated
by extrapolation from the interior so as to satisfy conservation
of mass, momentum and heat in the domain.

The method of solution is also as specified in the far field
discussions. The flow charts being shown in Figures [2.5] and [2.7
The two different approaches namely free surface and rigid-l1lid are
applicable for the jet problem also. For the mainland shore of
Biscayne Bay near field modeling may be done by rigid-lid approx-
imation owing to the sheltered nature of the bay. However, at
places like Hutchinson Island a free surface model is imperative

because of direct access to ocean tide.
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D. SOME RIGID-LID RESULTS .

The rigid-1lid model will be used to obtain some preliminary
understanding of the general wind driven circulation in Biscayne

Bay.

Fig.2.10 shows the horizontal grid system used to approximate
the shore-line of the Bay. No such rectangular fitting is nec-
egsary in the vertical direction owing to the mapping of the Bay

to a constant depth basin.

1. Constant Depth Rectanqular Basin

The Bay was approximated to a rectangular constant depth
basin of extent 25 Km x 8 Km x 4M Two cases were solved, one with
a vertical eddy viscosity to 5Scm /sec and the other with lcm /sec
The horizontal eddy viscosity and windstress were 104cm /sec and
1 dynes/cm2 respectively.

The time to reach steady state was about 5 hours for the
higher vertical viscosity case and 7 hours for the lower viscosity
case. There was very little variation with horizontal location.
This is expected for a constant depth basin where Coriolis forces

are not too dominant.

Fig.2.11 shows the Ekman spiral for the cases solved. It is
seen that for the higher viscosity case the Coriolis effect is al-
most negligible with velocities lying in the plane of the wind
stress. For the lower viscosity case the transverse velocities
owing to Coriolis effect are somewhat more pronounced. The top thlrd of
the basin has velocities in the general direction of the wind stress
with back-flow in the lower region.
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2 vVariable Depth Closed Basin - No Tidal Influence

The solutions for the variable depth basin were obtained by'
using the governing ‘equations in the vertically stretched co-ordin-
ate system. Since the governing equations in the stretched system
have extra terms, a completely different program had to be devel-
oped. A Dufort-Frankel scheme was used on the viscous terms. 'Thls
was necessary owing to the relatively small vertical grid spacings
at the shallow areas of the Bay. This procedure relaxes the
diffusive stability criterion.

The basin was assumed closed and tidal effects were ignored.
The purpose of the investigation here is to find the wind-driven
circulation pattern in the Bay. Later tidal fluxes will be intro-
duced to study the modifications caused by ocean tide.

A vertical eddy viscosity of 5cm2/sec. was agsumed. The
wind stress magnitude was taken to be .1 dynes/cm”. Two cases
have been solved. One for wind from the north, the other for
wind from the southeast. The average wind during summer and
spring in Miami is from the southeast and'iS-gt 5 miles ‘

per hour. Qualitative assessment of circulation for intermediate
wind directions can be made from the results of these two cases.

Fig. 2.12 ‘'shows some of the representative non-dimensional
numbers for the Bay. The relative importance of various terms
in the governing equation is thereby illustrated.

2.1 Wind From North

Fig. 2.13 shows the surface velocities at steady state with
wind from the north at about 5 miles per hour. The velocities
vary significantly in the domain. The variation of velocity
direction and magnitude is as a result of a number of effects.
The outline of the Bay guides the current near the shoreline.
The bottom slopes tend to influence the velocity, and the local
depth of the Bay is significant also. The shallower regions
have smaller velocities. This is seen in the shoal areas and
near the shore. The reduction of velocity near the shore is
caused mainly by the smaller depth rather than by the shore
boundary-layers. Estimates by Sengupta and Lick [2] have in-
dicated that the sidewall boundary layers are guite thin for
similar situations and do not extend to as far as the nearest
interior node (.8 kilometers from the shore). Fig. 2.14 shows
the velocities at a depth of 2 meters from the surface. There are
no velocity vectors in large parts of the domain since the Bay
is less than 2 meters deep in those parts.. The return flow can
be clearly seen.
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A cross-sectional view of the velocity field indicates a
cell like structure. Fig. 2.15 shows a section through J=7
(refer to Fig.2.16 }. It can be seen that the surface vel-
ocities are in the direction of the wind stress. Except for
the top third at each location the flow is in the opposite
direction indicating a return flow. There is sharp upwelling
at the near shore region. Wherever there is sharp change of
bottom depth, terms of the form @4/y become significant resulting
in vertical velocities to satisfy continuity.

It is very important to note that at point A in Fig.  2.15
there is close proximity of upwelling and downwelling. The
two cell-like circulation patterns divide the Bay.

This indicates that fluid in the region left of A is not
exchanged with fluid to the right of A with any degree of
facility.

Fig. 2.16 shows a section through J=9. A similar kind of
fiow as was discussed above may also be seen here with the basin
being divided into two parts at point A.

It is evident that shoals are regions which may divide the
bay into separate circulation regions under proper wind conditions.

2.2 Wind from Southeast

The prevailing winds during spring and summer are from the
southeast. The surface velocities for this case are shown in
Fig. 2.17 . The velocities are approximately in the direction
of the wind. The magnitude of the velocities wvary with depth
and are smaller near-shore and in shoal regions. It is inter-
esting to note the effect of bottom slope. In some parts near
the mainland shore the velocities are almost parallel to the
shore and not in the direction of the wind. The return flow
can be seen in Fig.2.18 which shows the velocities at a depth
cof 2 meters.

Fig. 2-19 shows a vertical cross-section of the Bay along
J=8. The cell-like circulation pattern-is quite clear with a
demarcation point between the cells at point A. The effect of
shoals is thus quite clear. Fig. 2.20 shows the velocities
at section J=9. Here again it is seen that the top quarter of
the bay has velocities in the direction of the wind component
with the deeper regions being a region of return flow. Vertical
velocities are seen in regions of large bottom slopes. Fig, 2.21
shows vertical sections at I=7 and I=11. These east-west sections
alsoc show a cell-like circulation pattern. The comments regard-
ing the regions of upwelling and downwelling are' the same as
before.
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The circulation patterns disscussed in this chapter are
typical and represent the basic nature of the wind driven cir-
culation in Biscayne Bay. It is important to note that the ocean
tides will greatly alter the flow patterns computed by the present
study. Inclusion of tidal effects and free-surface modeling will
result in more realistic flow patterns.
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LIST OF SYMBOLS

horizontal kinematic eddy viscosity
vertical kinematic eddy viscosity
vertical eddy viscosity

reference kinematic viscosity

A
v/ Aref

horizontal diffusivity
vertical diffusivity

reference diffusivity

By / Bres

specific heat at constant pressure
Euler number

coriolis parameter

acceleration due to gravity

depth at any location in- the basin
reference depth

thermal conductivity

surface heat transfer coefficient

horizontal length scale

pressure

surface pressure

turbulent Prandtl number

kPeclet number

heat source or sinks
Reynolds number
Richardson number
temperature

reference temperature

equilibrium temperature
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t time

tref reference time

u velocity in x direction

v velocity in y direction

w velocity in z direction

x horizontal cc-ordinate
Yy horizontal co-ordinate

z vertical co-ordinate

Greek Letters:

o horizontal co-ordinate in stretched co-ordinate system
B horizontal co-ordinate in stretched system
¥ vertical co-ordinate in stretched system
n ﬁbsolute viscosity
density
& dissipation term in energy equation
Superscripts:
(T ) time averages
( ™) dimensional mean guantity
( 7)) dimensional fluctuating gquantity

(  )og reference quantity
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RECTANGULAR CONSTANT DEPTH APPROXIMATION

(25 km x 8 km x 4 m) AX = Ay == 1 Xm; Az = 65.B6cm.
DAY = A, = 104cm2/sec.
2
Ay = 5 om” /sec.
: 2
—_— 1 dynes/cm,
qL .5 cm/sec.
& .
5 1 cm/sec. 2 om/sec
———— ) )
1
+
e 3 2 I BbbgG, 0
CAus=II A, = lcm™ /sec: A, = 10 "cm” /sec. ORKHN' tidﬂJTY :
Al A Uﬁ‘T.
— -1 dynes/cm?
+ 2.5 cm/sec,
5 )
\ 5 cm/sec 10 cm/sec.
1 4
e 1 1

Figure 2-1l Velocity Profiles in Biscayne Bay;
Approximation

Constant Depth
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Figure 2-12 Representative.Parameters for Biscayne Bay

ESTIMATES *

PARAMETER EXPRESSTON STGNIFICANCE FOR BISCAYNE
BAY
ASPECT COMPARISON OF HORIZON— s
H/L 5%x10
: RATIO TAL AND VERTICAL 5%
SCALES

INERTIA FORCES
VISCOUS FORCES

Re; REYNOLDS NO. Uref.L/A,ref

800

INERTIA FORCES

U
R. ROSSBY NO. ref/fL CORIOLIS FORCES .238

A 'VISCOUS DIFFUSION

B
Pr PRANDTL NO. ref/ ref THERMAL DIFFUSION .

Yyef.L CONVECTION
Pe PECLET NO. B ¢ Re.Pr.~ oy 800

gqH__ HYDROSTATIC PRESSURE
Eu EULER NO, U_ 2 S NANIC PRESSURE 4000

v ef

et SIMILAR TO EULER
Fr FRONDE KO, gH NUMBER .0159

2

L°/A.. and VERTICAL VISCOUS SCALE, 6
VISCOUS TIME 5 PH HORTZONTAL VISCOUS 64X10 secs.
SCALES H /Av "SCALE and 32,000 secs

TIME TAKEN FOR
CONVECTIVE TIME L/ref PARTICLE TO COVER 80,000 secs.
SCALE LENGTH SCALE -
* PBASED ON L=8Km. a..=10,000cm”/sec, Av.=5cm2/sec°
H=4M H

p . f=°6x10-4/sec.
ref=10cm/sec,

Bref=10,000cm2/sec; Bref=10,000cm?/sec.
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ITII. GROUND TRUTH & IN-SITU MEASUREMENTS

A. OBJECTIVE

The major functions of the measurements in this portion of the

project are to provides:

1)

2)

3)

Ground truth data for calibration and verification of

the remotely sensed measurements.

Boundary conditions and physical constants of the

areas 1nvestigated for the mathematical model.

Assistance in the development of new remote sensing

techniques.

The measurements can also prove useful in determining
the validity of the model as the predictions based on
it can be confirmed by future measurements under the

assumed conditions.

The guantities of interest in the measurement program are:

[

1)
2)
3)
4)
5)

- 6)

sur face temperature

temperatures at intermediate depths and at the bottom
current speed and direction

salinity

turbidity

pertinent meteorological data such as atmospheric

temperature, wind speed, wind direction, and humidity.
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Surface temperatures are measured both by direct means and
by an infrared radiation type instrument. The major use of the
surface temperature measurements is for the calibkration of the
remotely-sensed temperature. The direct measurements are obtained
with an accurate thermometer and with a thermistor at several depths
very close to the surface:; the latter to detect any possible
temperature gradient close to the surface. Due to possibkle
shifts in the calibraticn, it was found that a single thermistor
-moved to the several depths is preferable to the use of several

thermistors so that comparative readings will be meaningful.

The other guantities listed in the measurement program above
are primarily intended for the model studies. The temperature
profiles are needed to determine the vertical temperature gradients
and will be obtained at several horizontal locations for the three
dimensional information. Current flows at several of the inlet
areas of the bay are also of importance to the model study.
Salinity and turbidity measurements are of secondary interest but
will be done as conditions permit. The meteorological data has
proven useful both for the model studies and for the remote sensing

of the surface temperature.

B. MEASUREMENT SYSTEM

The instruments used in this program are listed in Table 3-1.
The thermistors are standard 4000 ohm semiconductors whose resistance
is a function of the temperature. Calibration curves for the
thermistors used are shown in Figs. 3-1, 3-2, 3-3, and 3-4. These
curves were obtained using a temperature bath control, and the
resistance was measured by a L & N Wheatstone Bridge. Unfortunately,
the bridge's internal batteries resulted in an excessively high
voltage across the thermistor causing resistance changes due to
ohmic heating. Instead an external 1.5 volt dry cell is used

which limits the thermistor dissipation to under 1 milliwatt,
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eliminating this problem. Although this reduces the sensitivity
of the bridge, the readings within the nearest 10 ohms are
nevertheless consistent with the accuracy and stability of the
calibrations and sensors. Another problem has been reading the
bridge galvanometer on board the vessel during tests because oOf
the boat motion. A digital null device with amplification is

presently under consideration to eliminate this difficulty.

The "Heat Spy" has not given consistent readings within
its nominal accuracy and the reason 1s under investigation. During
the run of August 21, it apparently had satisfactory results, but
in some preliminary tests its performance was gquestionable. The
proklem appears to be a leakage of radiation through the shutter.
A "black body" apparatus has been fabricated to calibrate this
device. The flowmeter used is of the rotor type which is most
suitable for the low currents and shallow depths of Biscayne Bay.
The manufacturer, General Oceanics, which is based in Miani,
modified their read-out system so that an audible "beep" is
heard for every half revolution. This has proven invaluable in
obtaining an average flow since the number of revolutions for an
extended period can be determined, thus providing an integrated
output. When measuring the current of the Hutchinson River
Island installation an inclinometer type instrument with
direction indication and a depth senser will be used since the
flows will be greater and measurements will have to be made in

deeper water.

The Turbiditimeter was calibrated against a lakoratory type
instrument and the results are shown in Fig. 3-5. The
transmissivity indicated by this meter, however, dces not appear
to be a good measure of the clarity of the water in terms of the
water appearance. The salinity bridge was completely unsatisfactory
as the readings were absurd. The reason is under investigation
and it may be necessary to employ a higher gquality conductivity
meter in the future if this information is deemed desireable.

The other instruments are routine and need not be discussed.
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C. PROCEBURES

The procedure for shipboard tests followed established
practice for this type of activity. The operation of each
instrument was verified in the laboratory and then stored in
the instrument carrying case using a checklist for all
equipment and accessories. On board, the instruments were
unpacked during departure and readies for use. 1In the tests
‘made in conjunction with the NASA-6 aircraft, the surface
temperature measurements werxe stressed, and consegquently,
readings at lower depths were eliminated since they would
consume valuable time. For this type of test, it is of
greater importance to make as many surface measurements as
possible at as many sites as possible since the objective 1is to

correlate the ground truth and remote measurements.

In the runs made for acquiring three-dimensional data
for the model studies, temperatures and current flows were
obtained at several depths, mainly at inlet areas of the Bay.
Prior to departure, responsibilities for the various
measurements were assigned to the individual members of the
staff, and each investigator noted and recorded his particular
measurements. While underway to the next station, the data
"was entered on the forms provided for this purpose. Certain
readings such as the resistances of the thermistors were
converted to temperatures so that discrepancies could be
noted immediately. The current speed "was also converted to its
value in cm. per sec. using the relation that two "beeps”
correspond to 1 revolution and that one cycle per sec. (Hertz)
corresponds to 50 cm. per sec.'for'the impeller blade used.
Other readings were direct. In the final data sheets, all
temperatures were recorded in degrees centigrade since most

of the instruments are calibrated in this unit.
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D. RESULTS AND DISCUSSION

The data sheets for the tests of July 29, 1974 and
Avgust 21, 1974 are shown in Tables 3-2 and 3-10. It should be
emphasized here that these tests were trial runs to
establish procedures, test the instruments, and try to correct
problem areas. In the Juﬂy 29th tests, there were sharp
disagreements between fheltemperatures obtained by the
‘thermistors at the 1%" depth and the 5" depth. Two separate
thermistors were used, and, due to changes in their '
characteristics, yielded these faulty readings. The procedure
has been modified so that only one thermistor is used for both
depths and this sensor is re-calibrated soon after the
completion of the shipboard tests for the temperature range
used. Using the same thermistor, comparative readings would
be valid, and careful recalibration would ensure the absolute
readings. This procedure was followed during the tests of
August 21st and it resulted in more meaningful information.
The majdr prcoblem area for the thermistor measurements is the
difficulty of reading the galvanometer on the ship. Since an
indication of the bridge kalance is the objective rather than a
specific deflection, a polarity indicator (digital) would suffice.
It is hoped to have a unit fabricated within the next few months
"with sufficient amplification for proper sensitivity. If the
model studies deem it necessary, an improved conductivity indicator
will be obtained for more meaningful salinity measurements. The
other measurements seem to be satisfactory and no changes are

presently contemplated.

From the trial runs and the experience acquired in the use
of the instruments, future experimental efforts should be more
fruitful. Procedures have been established, and all personnel
have been trained in the operaticn of all the instruments. This
is the significant conclusion since the bulk of the experimental

portion of the project lies ahead.
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2)

3)

4)

5)

6)

7}

8)

9)

10)

Egﬁigment
Fenwal Thermistors

2 H66 GB34J92
1 H21 GB34J92

"Circu-Temp" Precise
Bath Temperature Control
"Temp~-Tact™ Thermoregu-
lator Model A

Deluxe Marine Sextant
Catalog #742
Edmund Scientifiec Corp.

Model HSA-IG Heat

Spy Automatic Infra-

red Thermometer

Wahl Corp., L.A.. Calif.

Leeds & Northrup
Model 5305 Type S-1
Resistance BEidge

General Oceanics

Model 2031 Digital Flow-
meter & Model 2035
Flowmeter Deck Readout

Bechman Environline
Model EV-4 Underwater
Turbiditimeter

Beckman Salinity
Temperature Bridge

4" Biram Type

Anemometer
Davis Instrument Co.

Sling Psychrometer
Bacharach Industrial
Instrument Co.
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TABLE. 3-1

List of Equipment

Planned Use

Sensor for Measurement of
Temperature

Temperature Source for
Calibration of Thermistors

Determine Location

Infra-red Detection of
Temperature

Measurement of the Resistance

of the Thermistors

Measurement of Current Flow

Meaurement of Turbidity

Measurement of Salinity

Wind Velocity

Relative Humidity Air Temp.

Sensitivity

o 0
.05 Cat 30 C

0.17¢C

+ 1 minute of arc

+ .1°%

« 15%
Approxe«6 ohms for Thermistors

Minimum flow approx.
% cm./sec.

Approx. 4+ 2%% Transmissivity

+ 1 part per thousand
0-40 ppt.

+1 foot per minute

+ %°F
+ %7 humidity



~70-
TABLE -3-2

. REMOTE SENSING DATA SHEET
Date 7/29/74

Station: #1(Near Shore) Lat.25735,217' Time: 3:00 aM
Long.80° 16,845"
Bir Temperature: 28 C Humidity: 77%
Wwind Speed: 600 ft. per min. Sea State: calm
Wwind Direction: S.W. Sky Condition: clear, high cloud
Depth:

Infrared Surface Temperature: 26,6°C

[Near Surface 2/3fDepth From |Near Bottom
' Surface

Depth: 1%" ggth: 5" Depth; Depth:
Thermistor
Readingg 3020 ohms : 3410 ohms
in ohms 32.5°% 28.9%
Thermometer o
Reading 29%C
Current
cm/Bec I.Agm./sec.
current Dir. | 240 EMagng BERR ol
’ rom ‘r(ﬁ‘ﬁ?ﬁ-} (0 \iL

R 3 AGE IS - %

Turﬂidity .
{Trans- 90%
mittance, %)
jai . Bridge
Salinity:
Temperature:

aor .1x8: Data taken in conjunction with NASA-6 Aircraft . Average of readings indicated
. here first position on eastward run.
H-21 Thermistor used for l¥%" depth
K805 Thermistor used for 5" depth



Station:#7

Lat.25°35,283"

Long.80%13,571 '

Alir Temperature:

Wwind Speed:

Wind Direction:

Depth:

29°C

789 ft, per min.

2259 (magnet from N.)
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TABLE 3-3
REMOTE SENSING DATA SHEET
Date 7/29/74
Time: 8:55AM
Humidity: 76%
Sea State: calm

Infrared Surface Temperature: 28.3°C

Sky Condition:

clear, high cloud

Fear Surface 2/3 Depth From |Near Bottom
: Surface
pepth: 1¥" epth: 5" Depth: Depth:
Thermistor
Readings 2710 ohms 3200 ohms
in ohms 35,3% 30.5°%
Thermometer o
Reading 31%C
Jurrent 13, 8em/
cm/sec LOCm SEP- @
Current Dir. | 235°(from §) g&gﬁgﬁgh
JG&VU@.@‘\
'ﬁﬁﬁﬁﬁélp
—_ ‘é@f‘ o
Turbidity T T
(Trans- & ,{gﬁ?
mittance,%) 90% ~
Sal . Bridge:
Salainity:
Temperature:

here;second position on eastward run.
H-21 Thermistor used for 1%" depth
K805 Thermistor used for 5'" depth

Data taken in conjunction with NASA-6 Aircraft, Average of readings indicated
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TABLE 2-4
REMOTE SENSING DATA SHEET
Date 7029174

Station: #12(Near Soldier Key) Lat.25°35,348" Time: 9:30AM
' . Long.80°10.875"'
Air Temperature: 29°C Humidity: 75%
Wind Speed: 735 Ft. per min, Sea State: calm
Wind Direction: 255° (from N.) Sky Condition: clear, high cloud
Depth:

Infrared Surface Temperature: 28.3%

[Near Surface | 2/3 Depth From |Near Bottom
Surface

- Depth: 1X" epth: 3" Depth: Depth:
Thermistor
Readings 2720 ohms 3280 ohms
in ohms 35.2°% 29,9
Thermometer
Reading 30

[\
Current
cm/sec 27.1 em/sec.
Current Dir. 260° (from N)
Turbidity
(Trans-
mittance,%) 907%

s

Sal . Bridge:
Salinity:
Temperature:

Remarks: Data taken in conjunction with HASA-6 Aircraft ., Average of readings indicated
here; third position on eastward run.
H-21 Thermistor used for 1%" depth
K805 Thermistor used for 5" depth
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TABLE 3-5

REMOTE SENSING DATA SHEET

Air Temperature: 31°C

wind Speed:

Date 7/29/74
Station: #12(Near Soldier Key) Lat.25935.348' Time:  10:30AM
" Long.80°10.875"
Humidity: 697%
857 ft. per min. Sea State: calm

Wind Direction: 215° (from N.)

Depth:

Infrared Surface Temperature:

Near Surface

4

28,39

Sky Condition:

2/3 Depth From

¢lear, high cloud

Near Bottom

Surface

Depth: 1¥" Pepth: £ Depth: Depth:
Thermistor
Readings 2820 ohms 3190 ohms
in ohnms 34.3°C 30.6°C
Thermometer
Reading 30

1
Current
cm/sgec 28.3 cm/sec.

Current Dir.

250° (from N}

Turbidity
{Trans-
mittance, %)

907%

Sal . Bridge
Salinity:

Temperature:

- P
" IR

Data taken in conjunction with NASA-6 Alrcraft.

here; first position on westward run.
H-21 Thermistor used for 1%" depth
K805 Thermistor used for 5" depth

Average of readings indic¢ated
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TABLE 3-6

REMOTE SENSING DATA SHEET
Date 7/29/74

Station: #7(Near Buoy) Lat.25%35,283' Time: 11:10AM
Long.80°13.571"

‘Air Temperature: 30°C Humidity: 70%

Wind Speed: 1132 ft. per min. Sea State: choppy

Wind Direction: lad)(frmnN.) Sky Condition: Raining

Depth:

Infrared Surface Temperature: 29.4°¢C

Near Surface 2,3 Depth From |Near Bottom
' Surface '
Depth: 1% Pepth: 5" Depth: Depth:

Thermistor
Readings 2710 ohms 3160 ohms
in chms 35.3% 30.87¢
Thermometer °
Reading 317 ¢

W\
Current
cm/sec 24,6 Cm/SEC
Current Dir. 210°(from N)
L REZRODPOBILITY OF THE
Turbidity - 'RIG;]INAE; PAGE s PUOR
(Trans- 90% 0
mittance, %)

Y

Sal . Bridge:
Salinity:
Temperature:

Pe- .. -ka: data taken in conjunction with NASA-6 Ailrcraft . Average of readings indicated
here; second position on westward run.
H-21 Thermistor used for 14" depth
K805 Thermistor used for 5" depth
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TABLE 3 -7

REMOTE SENSING DATA SHEET
Date 17297724

Station: #1(Near Shore) Lat.25°35.217' Time:  12.00Noon
. Long.80°16,845"

Air Temperature: 279 Humidity: 74%

Wind Speed: 707 ft. per min, Sea State: calm

Wind Direction: 2350(frmnN.) Sky Condition: partly cloudy

Depth:

Infrared Surface Temperature: 28.9°C
Near Surface | 2/3 Depth From |Near Bottom

. Surface :

Depth: 13", |Depth: 51 Depth: Depth:

Thermistor

Readings 2840 ohms 3200 ohms

in ohms 34,1% 30.5%

Thermometer

Reading 30°%

Current

cm/sec 25,1 cm/sec

Current Dir. 195°(from N)

Turﬁidity .
(Trans- 97% [ZEPRODUCIBILITY OF THE
mittance,%) ORIGIAL PAGE IS POOR

Sal . Bridge:

Salinity:
Temperature:
Remarks: Data taken in conjunction with NASA-6 Aircraft, Average of readings indicated

here ; third position on westward run.

H-21 Thermistor used for 1%" depth
K805 Thermistor used for 5" depth
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TABLE 3-8
REMOTE SENSINC. DATA SHEET
Date 8/21/74
(o}

S_ation: A Lat. 25041'39' Time: 9:40AM
- Long.80°12.86'
Air Temperature: 30°C , Humidity: /4%
LWind Speed: 660 It, per min, ' Sea State: Light chop
Wind Direction:  135° (from N) Sky Condition: High broken clouds

307 low clouds
Depth: 12 f¢t.

Infrared Surface Temperature: 30.5°C

[Near Surface |1/3 Depth From .2/3 Depth From |Near Bottom
Surface Surface .
Depth: 1 ft. ﬁlf[lepth: 4 ft, Depth: 8 ft, Depth: 12 ft,
Thermistor
Readings 3170 ohms 3180 ohms 3180 ohms 3190 ohms
in ohms 30.7°%C 30.7% 30.7°C _ 30.69C
Thermometer
Reading 31.0°%
cCurrent
~m/aec 5.28cm/sec, 4,7%cm/ sec. 3.65cm/sec.
f':urrent Dir. deptlé 2 ft. ) depth 8 ft. depth 10 ft.
115
Turbidity
{(Trans- _ 92%7%
mittance, %) ﬂﬁﬁrﬁﬂ
) TR PR HE
@“EE&EGH\T \.JL/—.LJiLJ_AI i .
P&GEISI%)LHE
-- dr
Thermistor: 3110 ohms . 3130 ohms
. 30.9% 30.8°%
»Surface .
Temprrature: 1" from surface| 3 3/4" from surface
Remarks: K-3007 Thermistor, Unit #2, used for depth runs

K-805 Thermistor used for surface measurement

High Tide: 11:39 AM at Soldier Key
Low Tide: 6712 PM at Soldier Key



ation: |

, Lat. 25741.00’

. Long.80°11.02"

Alr Temperature:

~Wind Speed:

Wind Direction:

Depth:

30.3°C

896 Ft. per min.

145°

13% fr.

L

Sea State:

Sky Conditpon:

infrared Surface Temperature: 30.3%

TABLE 3-9
REMOTE SENSINC DATA SHEET
Time: 10:50AM
Humidity: 70%

Smooth - light chop

Clear day

10% low clouds
75% high clouds

INear Surface |1/3 Depth Frdm 2/3 Depth From |Near Bottom
, Surface _ Surface
Depth: 1 ft. |Depth: 4 ft, " Depth: 8ft. Depth: 13 ft.
Thermistor
Readings 3200 3200 o 3200 3200
in ohms 30.5°C 30.5 C 30.5°%C 30,59
Thermometer o
Reading 31.0%
Current
-m/sec 6.77cm/sec. 5.31 em/sec. 2.30cm /sec
~urrent Dir. | depth: 2 ft. depth: 6 ft. depth: 10 ft.
135 '
Lo
- @@?‘.Q7“~
Turbidity RPN SV
(Trans-— ) . Rl TR
mittance, ) 90% 90% “%5£9£?@@2ﬁ? 90%
O{){?
Thermistor: 3130 ohms 3150 ohms
} 30.8°C 30.5%
Surface 1" from surfacd 3 3/4" from surface
Temperature:

N — —— ettt

Remarks:

K-3007 Thermistor, Unit #2, used for depth runs

K-805 Thermistor, Used for surface measurement

High Tide:
Low Tide:

11:39 AM at Soldier Key
6:12 PM at Soldier Key
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TABLE 3-10
REMOTE SENSING DATA SHEET
Date 8/21/74
- . Lat, 25939,59° .

5 dtion: C . * 2z :
5 i Long.80011.20' Time 12:55pM
Alr Temperature: 130.6°C Humidity: 61%
Wind Speed: 594 ft, per min, ‘ Sea State: Smooth

» - . 0 . - -
Wind Direction: 135 Sky Condition: High broken clouds

clear day
Depth: 15 f¢.
infrared Surface Temperature: 31.5%
INear Surface |1/3 Depth From 2/3 Depth From [Nedr Bottom
: Surface ' Surface
Depth: " pth: 4 frt, Depth: Depth:
Thermistor
Readings 3120 3140
ir. ohms 31,2% 31,0 C
rhermomecter
teading
33%
‘urrent ‘
m/Bec 9,90cm/sec 10.5cm/sec 7.29 cm/ sec.
lurrent Dir. [depth: 2 frt. depth: 6 frt, depch: 10 ft
135°
urbidity
Trang~
ittance, ) REPROpD UCIBILITY
ORIGINAL Pacy r L. LHE
13 Pogn

hermistor: 3140 ohms 3140 ohms
. 30.8°¢ 30.8°%
wrface
smperature: | %' from surfacel 3 3/4" fpom surface

emark::

Due to loss and subsequent recovery of thermistor assembly, full depth run was not
made, Loss of anchor and other problems curtailed testing after this station.
K-3007 Thermistor used for depth run (Unit #2)

K-805 Thermistor used for surface measurement

High Tide: 11:39 AM at Soldier Key
Low Tide: 6:12 PM at Soldier Key
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'ITV, REMOTE SENSING WATER SURFACE TEMPERATURE STUDY

A. Introduction

Water surface temperature remotely measured by infrared
radiometers aboard satellites and aircraft will be used to provide
information for mathematical model development. These data will be
used for providing initial and boundary conditions of the model as
well as for testing and evaluating the model. A flow chart for

the remote sensing study is given in Figure 4-1.

Ultimately, it is hoped that satellites can provide the
accurate, high-resolution water temperature data needed for model
studies, monitoring thermal pollution such as hot water plumes,
and possibly locating cold water sources such as springs on the

continental shelf for use as heat sinks.

The use of boats or other surface-based measuring systems
would be too costly and time'consuming for cobktaining the necessary
data on the time and space scales desired. Aircraft can obtain
the data on the time and space scales desired but the logistics
and'expense of routine measurements makes them less desirable

than satellites.

The space resoclution of thermal IR temperature measuring
systems used in the present generation of satellites does not
provide as much detail as 1s desired. However, the resolution of
these thermal sensors is improving with each new generation of
satellites so that optimum resolution should be available in the
future. Clouds may blank satellite borne sensors from seeing the
ocean surface on some occasions but the freguency of observations

is still bhetter than obtainable by other means for similar costs.
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The Kennedy Space Center's NASA-6 aircraft with an IR
Thermal Scanner and photographic equipment made a research data
gathering flight on 29 July 1974, 0800-1300 EDT. Thermal IR
data were acquired from the Air Force DMSP and NOAA-2 satellites
during this time period. Also, ground truth data were gathered
by boat along an E-W line across Biscayne Bay beneath the
aircraft flight path on this occasion. The aircraft made
twelve west toc east runs at 1,500 ft. altitude along this path
during the 5-hour period while water temperature data were
taken by boat. The main purpose of this first joint aircraft
and surfacecraft data gathering expedition was to correlate
measurements and to calibrate the airborne IR thermal scanner
against the sea surface measurements. Also, the satellite IR
data are being correlated with these aircraft and surface

measurements.

B. Air Force Satellite Data

The Air Force Defense Meteorological Satellite Program
(DMSP), formerly DAPP, satellites are in polar orbit. These
sun-synchronous satellites are approximately 450nam above the
earth and have a period of 10l minutes. In the operatiocnal mode,
two satellites provide imagery data every six hours over any
gspot on the globe (sunrise, sunset, local noon and midnight).
This imagery includes the visual, near infrared and infrared
spectral intervals over a 1600 to 1800 wm swath below the satellite.
Real time data within the acquisition range, approximately a radius
of 1500 miles of the receiving station, is provided to several
tactical sites whereas the Air Force Global Weather Central (AFGWC)
at Omaha, Nebraska, receives stored data of global coverage.
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The present capability of the DMSP includes the following:

DATA TYPE SPECTRAL INTERVAL RESQLUTION

VHR Data _ 4 to 1.1, 0.3nm resolution
WHR Data 8 to 13, 0.3nm resoclution
HR Data .4 to 1.1, 2.0nm resolution

(HR data has a low light capability that "sees" at night) .

IR Data 8 to 13M 2.0nm resolution

The Very High Resolution data (VHR) "sees" in the visible
and near infrared. The product output is a positive transparency
that can be received at 1:7,500,000 or 1:15,000,000 scale. Sensocx
altitude and attitude variations are compensated for and
foreshortening at the edges 1is removed. Flexibility is further
provided in that the data can be enhanced to bring out cloud/land
and cloud/cloud significant contrasting features. The infrared
products (WHR and IR) receive emitted thermal energy from 310°K
to 210°K. Flexibility is provided to receive 1’ K increments in
gray shade steps from 2 to 16 or a 25°K span of temperatures can
be divided into 16 gray shade steps. Electronic circuitry in the
sensors converts the sensed thermal IR energy directly into
equivalent black-body temperature, making temperature the directly
displayed parameter within the limite indicated. The High
Resolution (HR) data (.4 to l.lu) can be processed day and night.
Accurate nighttime gridding can be accomplished by using city
light identification from this HR data. (Refs. 1,2)

The present generation of these satellites uses the
0.3-mi and 2.0-mi resolution lenses interchangeably. Normally
the 0.3-mi lens is used to acquire WHR data on the 8-13, thermal
IR channel only for the midnight pass. During daylight passes,
the 0.3-mi lens is usually switched to the 0.4-1.1, visual
wavelength channel and the 2-mi lens is used on the IR channel.

In 1975, a 0.3-mi lens is to be available at all times on the
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IR channel of a new series of these satellites. Presently, the
0.3-mi lens can be used for IR data during the daylight passes

by special request.

A DMSP local readout and data processing van is scheduled
for installation at Kennedy Air Force Station, Florida, in 1975.
At the present time, DMSP thermal IR data are obtained from other
readout stations through the STAFFMET Section, Detachment 11,
6 Weather Wing, Air Weather Service, Patrick AFB, Florida.

C. NOBA Satellite Data

The National Oceanic and Atmospheric Administration NOAA-2
and NOAA-3, ITOS series of satellites provide thermal IR data
in the 10.5 to 12.5 micron region. This modified version of the
Improved TIROS Operational Satellite (ITOS D-G) became operational
in 1972, A Very High Resolution Radiometer (VHRR) with 9.5nm
resolution provides the thermal IR data. These satellites are in
sun—synch;onous, 790 nm polar orbit with a period of 115.14 minutes.
{(Ref. 3)

The thermal IR data which we use from the NOAA-2 and
NOAA-3 satellites is received at Wallops Island, Virginia, and
processed at the National Environmental Satellite Services (NESS)
facility in Suitland, Maryland. Data for the Florida area are
available on southbound passes at approximately 0945 EDT (1345%)
and on northhound passes at 2100 EDT (0l00Z). For minimum
distortion and maximum resolution, it is desirable to have the
satellite pass directly over our research area. The NOAA-2 and
NOAA-3 orbits are not identical and both have a precession of about
one degree of longitude ber day in order to remain sun-synchronous.
Therefore, the orbital track of one of these satellites is usually
better than the other for our use on a given day.
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. These satellites also have a Vertical Temperature Profile
Radiometer (VTPR) for obtaining atmospheric temperature and water
vapor profiles by measuring spectral radiance in eight intervals
in the infrared. Energy is measured in the 11 micron atmospheric
window to deduce radiances free from effects of clouds in the
other seven channels. Then six cloud free, discreet, narrow
intervals in the 15 micron CO2 region are measured to infer the
atmospheric temperature profile. Finally, radiance in a single
spectral interval near 18.7 microns in the rotational water vapor
absorption band is measured and used to estimate water vapor

concentrations in the troposphere. (Refs. 3, 4, 5, 7)

This VTPR system is presently used by NESS primarily to
obtain temperature profiles and moisture data over the oceans or
cther places where no radiosonde balloon measurements are
available. However, if needed, special computations can be made
to obtain water vapor data for applying absorption corrections
to our thermal IR measurements of sea surface temperature. In

Flofida,\radiosonde data are normally available for this purpose.

D. NASA-6 Aircraft Flight

On 29 July 1974 the Kennhedy Space Center NASA—6 Beechctaft
C-45H made research flights over Biscayne Bay at Miami, Florida,
while NOAA and Air Force gatellites with thermal IR radiometers
were passing overhead and a boat was gathering ground truth data
in the Bay. The aircraft flew at 1500 ft. altitude and made
twelve west to east data passes across Biscayne Bay between
0800 EDT (1200Z) and 1300 EDT (1700Z).

A race track course was flown with data collection starting
over land near Cutler Ridge Power Plant and continuing to a channel
marker buoy in the western part of the Bay thence eastward on
approximately a 90-degree heading to Soldier Key on the east side

of the Bay where each data run was terminated, see Figure 4-2.
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¥o data were gathered on the westbound return flights which
were made to the north of this course. Water temperature data
were gathered by boat along the course from the channel marker

buoy eastward to Soldier Key on this date.

The 8-14 micron IR Thermal Scanner was used to remotely
sense the sea surface temperature from the aircraft. Its field
of view is 2.5 milliradians and it scans through 77920’ degrees
of arc normal to the flight path of the aircraft. It has an
18"F usable dynamic range and for our project it was calibrated
to.measure temperatures from 76°F to 94*F. The analog readout was
recorded on magnetic tape aboard the aircraft. These data were
later transferred from the tape to 70-mm film at Kennedy Space
Center for our use. A calibration of the film gray scale density

in terms of temperature was provided.

A 9" by 9" aerial camera was also used to take color
photographs along the flight path on some data passes. This was
to record positions of the boat and some key land marks in
addition to possibly showing turbidity patterns in the Bay.

The first six thermal IR data passes were flown between 0800 and
1000 EDT with color photography on the last pass. The last six
data passes were flown between 1100 and 1300 EDT with color
photography on the first and last passes. |

F. Radiosonde Data for Water Vapor Corrections of IR Measurements

Rawinsonde halloons are launched daily at Miami International
airport and Kennedy Air Force Station at 0800 EDT (1200Z) and
2000 EDT (0000Z). They obtain pressure, temperature, humidity, wind
speed, and wind direction data to altitudes in excess of 50,000 ft.
Most of the atmospheric moisture is contained in the troposphere
below 30,000 ft. Therefore, these soundings can be used to
calculate the precipitable water that will attenuate our thermal
IR measurements of sea surface temperature from aircraft or

spacecraft on a given day.
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Figure 4-3 is the Miami sounding for 0800 EDT on 29 July
1974 when the NASA-6 aircraft research flight was made over
Biscayne Bay. The precipitable water content of the atmosphere
was obtained by graphically determining the mean vapor pressure
(e) in millibaxrs of the atmospheric layers between plotted points
on this sounding. The water.content for each of these layers was
then calculated using the equation:

_ 0.622
Woem = g e 1n P2/Pl

where g is the acceleration of gravity, Pl ig the pressure at the
top of the layer, and P2 is the pressure at the bottom in millibars.

The total W was then obtained by summing these values for all

layers of the sounding.

Table 4-1 presents the precipitable water computed by
layers for the 12002 sounding, 29 July 1974. These data can be
applies to the nomograms in Figure 4-4 to obtain the temperature
cqrrections for the thermal IR sea surface temperatures measured
from satellites. (Ref. 6) Since the atmosphere was extremely moist
on this occasion, it is necessary to extrapolate the Kelvin
temperature curves in Figure 4-4 up to the 5 cm precipitable water
line. Table 4-4 also provides data for lower altitudes that can be
used to apply corrections to IR temperature measurements made from

aircraft.

F. BSatellite Data and Results

On the morhing of 29 July 1974, the NOAA-3 satellite pass
was too far west of our research area for optimum use. Thermal IR
photographs were obtained from the NOBA-2 satellite which passed
east of Florida, Figure 4-5. Scuth Florida is in the upper left
hand corner of this photograph with Cuba shown near the center of

the photograph.



=86~

Unfortunately, a trough of low pressure was along the
east coast of Florida and it produced extensive clouds and rain.
Our area of interest at approximately 25.5°N and 80.3°W is masked
by a NE-SW band of clouds over the coastal area. The National
Environmental Satellite Service in Washington is preparing an
enlarged and enchanced thermal IR photograph of the Miami area in
place of Figure 4-5. However, there is little hope of using it to
measure sea surface temperatures in Biscayne Bay because of the
cloud cover. The main obijective is to develop satellite data
processing techniques that can be applied to our future experiments.
For our purposes, it is necessary to de—-emphasize the clouds and
enhance the gray scale to portray sea surface temperatures.

The Air Force DMSP satellite thermal IR data for 29 July
1974 has not been received. Enlarged photographic prints of the
data are presently being made at Patrick Air Force Base, Florida.
We have been informed that extensive cloud cover also existed at
the times of the DMSP satellite passes and little or no usable
data are available for Biscayne Bay.

Figure 4~-6 is a DMSP satellite thermal IR photograph with
one-degree Kelvin gray scale steps taken on 24 March 1972. fThis
illustrates the capability of the DMSP and is typical of the
guality of sea surface temperature data that can be obtained in the
absence of clouds. The IR sensor on this satellite has 0.2-nmi
resolution so that enlarged photographs can be used to proeduce

greater detail in the area of interest.

It is improbable that future research data gathering
flights on this project will encounter as much cloudiness over
coastal waters in the forenoon as occured on 29 July 1974.
Certainly flights made during the South Florida dry season,
November through May, should be better than this July case. Also,
to increase the number of cases for study, thermal IR satellite
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data will be acgquired for days when only surface measurements

are made by boat and no ailrcraft data are collected. Clouds will
always be a problem on some occasions but if enough days are
sampled some satellite passes are certain to produce cloud free

results for a given location.

The main results of our satellite study have been to
identify problems and limitations of the data and to develop,
with the aid of the Air Force and the National Environmental
Satellite Service, methods for enhancing and enlarging thermal
IR displays for mesoscale sea surface temperature measurements.
This i1s a pioneering effort in analysis on this small scale. We
are pushing the state-of-the-art and are locking forward to the
future development of spacecraft thermal IR sensors with better
resolution than the 0.3 to 0.5 nautical mile available today.

Up to this time, thermal IR sea surface temperature measuréments
from satellites have been used for macroscale studies over the
broad oceans where one reading per degree of latitude and
longitude was usually adequate.

Further research will be carried out on the 29 July 1974
experiment if usable satellite thermal IR sea surface temperature
data can be produced. In that event, Table 4-1 and Figure 4-4
will be used to correct the IR measured sea surface temperatures
for atmospheric water vapor absorption losses. Then the resulting
corrected temperatures will be correlated with ground truth
measurements taken by our boat in Biscayne Bay.

Some noise and calibration problems occurréd with the
thermal IR measurements from the NASA-6 aircraft on 29 July.
Part of the data showing the Cutler Ridge Power Plant discharge
plume of warm water and the area of Biscayne Bay near Soldier Key
may be usable, .if it can be calibrated, for correlation with
the boat and satellite cbservations. Gray-shade steps for
one-degree temperature increments are desired for the aircraft
filmed IR data in order to match the temperature resoluticn of
the ‘boat measurements and take into account small temperature
gradients in some parts of the Bay.
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FIG. 4-6. THERMAL IR _(8—13)#) DATA FROM THE AIR FORCE DMSP SATELLITE EARLY
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TABLE 4 -1.
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PRECIPITABLE WATER

29 JULY 1974

AT MIAMI, 1200 Z,

Approximate Accumulative
Altiiude Feet Layers P1/P2 Mean e for layer W cm foxr Layers

23,600 400

1.38 5.376
21,400 438 -
438

2.25 5.299
18,300 500
500

3.1 5.113
17,400 518
518

3.7 5.045
16,000 550
550

4.4 4.907
14, 600 580
580

5.1 4.762
13,800 598
598

k 6.2 4.665
11, 400 658
658

7.0 4,296
9,900 700
700

9.8 4.027
7,100 780
780

10.6 3.367
6,700 790
. 790

12.4 3.283
4,800 850
850

17.8 2.718
3,300 895
895

22.8 2.1479
2, 000 940
940

29.0 1.4516
700 985
985

28.0 .6081

Surface 1020 )
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